Correction du DS nº 2

Exercice 1

Question 1

- 1. On a $f(x) = \frac{x^2}{1+2x}$, d'où $f'(x) = \frac{2x(1+2x)-2x^2}{(1+2x)^2} = \frac{2x(1+x)}{(1+2x)^2}$. Le signe de f'(x) est celui de 2x(1+x) car $(1+2x)^2 > 0$. On a, pour tout $x \le -1$, 2x < 0 et $1+x \le 0$, d'où pour tout $x \le -1$, $f'(x) \ge 0$. Donc f est croissante.
- 2. $\forall x \leqslant -1, f(x) x = \frac{x^2}{1 + 2x} x = \frac{x^2 x 2x^2}{1 + 2x}$, Soit $f(x) x = \frac{-x x^2}{1 + 2x} = \frac{-x(1 + x)}{1 + 2x}$. Or sur l'intervalle $] \infty, -1], -x \geqslant 0, 1 + x \leqslant \text{et } 1 + 2x < 0$. D'où $\forall x \leqslant -1, f(x) x \geqslant 0$, soit $f(x) \geqslant x$.
- 3. Montrons par récurrence que : $\forall n \ge 0 : u_n \le -1$.

Pour $n = 0, u_n = u_0 \le -1$.

Supposons que pour un entier $n \ge 0, u_n \le -1$.

Montrons que $u_{n+1} \leq 1$. Comme f est croissante, on an $f(u_n) \leq f(-1)$. Or $f(u_n) = u_{n+1}$ et f(-1) = -1, d' ou $u_{n+1} \leq -1$;

Conclusion: Pour tout $n \ge 0, u_n \le -1$ 4) on a: $\forall n \ge 0, u_n \le -1$ et d' on d'après la question 2), $f(u_n) = u_{n+1} \ge u_n$ Donc $(u_n)_{n \ge 0}$ est croissante.

4. La suite (u_n) est croissante d'après 4) et majorée par -1, donc $(u_n)_{n\geqslant 0}$ converge d'après le théorème de la convergence monotone vers une limite l. Comme f est continue sur $]-\infty,-1]$, on a f(l)=l. Mais $f(l)=l\Leftrightarrow \frac{-l(l+1)}{1+2l}=0$ (voir 2)). Donc $f(l)=l\Leftrightarrow l=0$ on l=-1. Comme pour tout $n\in\mathbb{N},\quad u_n\leqslant -1$, on a : $l\leqslant -1$ Donc $f(l)=l\Leftrightarrow l=-1$.

On conclu que la suite $(u_n)_n$ converge vers -1.

Question 2

Soit $(u_n)_{n\geqslant 0}$ la suite définie par $u_0=0$ et $\forall n\geqslant 0: u_{n+1}=\frac{1+(u_n)^2}{2}$.

1.

$$u_1 = \frac{1 + u_0^2}{2} = \frac{1 + 0}{2} = \frac{1}{2}.$$
$$u_2 = \frac{1 + u_1^2}{2} = \frac{1 + \frac{1}{4}}{2} = \frac{5}{8}.$$

2.
$$\forall n \geqslant 0, u_{n+1} - u_n = \frac{1 + u_n^2}{2} - u_n$$

$$= \frac{1 + u_n^2 - 2u_n}{2}$$
$$= \frac{(u_n - 1)^2}{2}$$

On a pour tout $n \ge 0$, $\frac{(u_n - 1)^2}{2} \ge 0$, d'où $u_{n+1} - u_n \ge 0$. Donc $(u_n)_{n \ge 0}$ est croissante.

- 3. Pour n = 0, on $a : 0 \le u_n = u_0 = 0 \le 1$.
 - Supposons que $0 \leqslant u_n \leqslant 1$ pour un entier n, montrons que $0 \leqslant u_{n+1} \leqslant 1$. On a, $u_{n+1} = f(u_n)$ où $f: x \longmapsto \frac{1}{2}(1+x^2)$.

Or f est croissante sur $[0; +\infty[$ et par hypothèse de récurrence $0 \le u_n \le 1$,

d'où $f(0) \le f(u_n) \le 1$. Or f(0) = 0, $f(u_n) = u_{n+1}$ et f(1) = 1

Donc $0 \leqslant u_{n+1} \leqslant 1$.

4. La suite $(u_n)_{n\geqslant 0}$ est croissante (d'après 2)) et majorée (d'après 3)), donc $(u_n)_{n\geqslant 0}$ Converge vers une limite l. Comme $f: x\mapsto \frac{1+x^2}{2}$ est continue sun $\mathbb R$ on a f(l)=l. Or $f(l)=\Leftrightarrow f(l)-l=0\Leftrightarrow l=1$. Donc $\lim_{n\to +\infty}u_n=1$.

Exercice 2

(a) Pour
$$n = 1$$
 on a $\sum_{k=0}^{n-1} k (a_k - a_{k+1}) = 0 \times (a_0 - a_1) = 0$ et $\left(\sum_{k=1}^{n} a_k\right) - na_n = a_1 - 1 \times a_1 = 0$ Donc $P(0)$ est

(b)
$$\begin{cases} \sum_{k=0}^{n} k (a_k - a_{k+1}) = \sum_{k=0}^{n-1} k (a_k - a_{k+1}) + n (a_n - a_{n+1}) \\ \sum_{k=1}^{n} a_k = \left(\sum_{k=1}^{n+1} a_k\right) - a_{n+1} \end{cases}$$

(c)
$$P(n+1)$$
: $\sum_{k=0}^{n} k (a_k - a_{k+1}) = \left(\sum_{k=1}^{n+1} a_k\right) - (n+1)a_{n+1}$.

Supposons que P(n) est vraie pour un entier n, montrons que P(n+1) est vraie.

On a:
$$\sum_{k=0}^{n} k(a_k - a_{k+1}) = \left(\sum_{k=0}^{n-1} k(a_k - a_{k+1})\right) + n(a_n - a_{n+1}) \text{ (d'après b)}$$

Or
$$\sum_{k=0}^{n-1} k (a_k - a_k + 1) = \left(\sum_{k=1}^{n} a_k\right) - na_n$$
 par hypothèse de récurrence,

d'où

$$\sum_{k=0}^{n} k (a_k - a_{k+1}) = \left(\sum_{k=1}^{n} a_k\right) - na_n + n (a_n - a_{n+1})$$

$$= \sum_{k=1}^{n} a_k + na_{n+1}$$

$$= \sum_{k=1}^{n+1} a_k - a_{n+1} - na_{n+1}$$

Soit
$$\sum_{k=0}^{n} k (a_k - a_{k+1}) = \sum_{k=1}^{n} a_k - (n+1)a_{n+1}$$

2) (a)
$$\forall n \in \mathbb{N}^*, \sum_{k=0}^{n-1} (ka_k - (k+1)a_{k+1}) = 0 \times a_0 - na_n$$

(b) On a:

$$(ka_k - (k+1) - a_{k+1}) + a_{k+1} = (ka_k - ka_{k+1} - a_{k+1}) + a_{k+1}$$
$$= ka_k - ka_{k+1}$$
$$= k(a_k - a_{k+1})$$

(c) On a:

$$\sum_{k=0}^{n-1} k(a_k - a_{k+1}) = \sum_{k=0}^{n-1} (ka_k - (k+1)a_{k+1}) + a_{k+1})$$
$$= \sum_{k=0}^{n-1} (ka_k - (k+1)a_{k+1}) + \sum_{k=0}^{n-1} a_{k+1}$$

Or
$$\sum_{k=0}^{n-1} (ka_k - (k+1)a_{k+1}) = -na_n$$
 et $\sum_{k=0}^{n-1} a_{k+1} = \sum_{k=1}^{n} a_k$ par changement d'indice.

Donc
$$\sum_{k=0}^{n-1} k (a_k - a_{k+1}) = -na_n + \sum_{k=1}^{n} a_k$$
.

Soit

$$\sum_{k=0}^{n-1} k \left(a_k - a_{k+1} \right) = \left(\sum_{k=1}^{n} a_k \right) + n a_n$$

3). (a) Pour $a_k = k^2$, an a:

$$\sum_{k=0}^{n-1} k (a_k - a_{k+1}) = \left(\sum_{k=1}^n a_k\right) - na_n$$

$$\Leftrightarrow \sum_{k=0}^{n-1} k \left(k^2 - (k+1)^2\right) = \left(\sum_{k=1}^n k^2\right) - n^3$$

$$\Leftrightarrow -\sum_{k=0}^{n-1} k (2k+1) = \frac{n(n+1)(2n+1)}{6} - n^3$$

$$\Leftrightarrow \sum_{k=0}^{n-1} k (2k+1) = -\frac{n(n+1)(2n+1)}{6} + n^3$$

On a

$$-\frac{n(n+1)(2n+1)}{6} + n^3 = n\left(\frac{-(n+1)(2n+1) + 6n^2}{6}\right)$$
$$= n\frac{4n^2 - 3n - 1}{6}$$
$$= \frac{n(n-1)(4n+1)}{6}$$

Donc
$$\sum_{k=0}^{n-1} k (k^2 - (k+1)^2) = \frac{n(n-1)(4n+1)}{6}$$
.

(b) On a $\forall n \in \mathbb{N}^*$,

$$\sum_{k=0}^{n-1} \ln \left(\left(\frac{k}{k+1} \right)^k \right) = \sum_{k=0}^{n-1} k(\ln(k) - \ln(k+1))$$

$$= \sum_{k=1}^{n} (\ln(k)) - n \ln(n) \text{ d'après (*) pour } a_k = \ln(k).$$

$$= \ln(n!) - \ln(n^n)$$

Donc
$$\sum_{k=0}^{n-1} \ln \left(\left(\frac{k}{k+1} \right)^k \right) = \ln \left(\frac{n!}{n^n} \right)$$

Exercice 3

Pour toutes suites numériques $u=(u_n)_{n\in\mathbb{N}}$ et $v=(v_n)_{n\in\mathbb{N}},$ on définit la suite u*v=w par :

$$\forall n \in \mathbb{N}, \ w_n = \sum_{k=0}^n u_k \, v_{n-k}$$

Partie I : Exemples

1. Premiers exemples

Pour tout entier naturel n, calculer w_n en fonction de n dans chacun des cas suivants :

(a) On a alors
$$w_n = \sum_{k=0}^n u_k v_{n-k} = \sum_{k=0}^n 2 \cdot 3 = 6 (n+1)$$

(b) $u_n = 2^n$ et $v_n = 3^n$. On a alors

$$w_n = \sum_{k=0}^{n} 2^k 3^{n-k} = 3^n \sum_{k=0}^{n} (2/3)^k = 3^n \frac{\left(\frac{2}{3}\right)^{n+1} - 1}{\frac{2}{3} - 1} = -2^{n+1} + 3^{n+1}$$

(c) $u_n = \frac{2^n}{n!}$ et $v_n = \frac{3^n}{n!}$. On a alors

$$w_n = \sum_{k=0}^{n} \frac{2^k}{k!} \frac{3^{n-k}}{(n-k)!} = \sum_{k=0}^{n} \frac{1}{n!} C_n^k 2^k 3^{n-k} = \frac{1}{n!} (2+3)^n = \frac{1}{n!} 5^n$$

2. En changeant l'indice k par n-k, on obtient le résultat.

Partie II : Application à l'étude d'un ensemble de suites

Dans cette partie, A désigne l'ensemble des suites $a=(a_n)_{n\in\mathbb{N}}$ de réels positifs vérifiant :

$$\forall n \in \mathbb{N}^*, \quad a_{n+1} \leqslant \frac{1}{2}(a_n + a_{n-1})$$

1. Si une suite a est décroissante alors pour tout entier n>0: $a_{n+1}\leq a_n\leq a_{n-1}$ donc $a_{n+1}\leq a_{n-1}$ et en additionnant ces deux inégalités on a $2a_{n+1}\leq a_n+a_{n-1}$ ou encore, $a_{n+1}\leqslant \frac{1}{2}(a_n+a_{n-1})$.

Donc toute suite décroissante de réels positifs est élément de A.

Si une suite a est strictement croissante alors $a_{n+1} > a_n > a_{n-1}$ et $2a_{n+1} > a_n + a_{n-1}$ et on n'a donc pas $a_{n+1} \leqslant \frac{1}{2}(a_n + a_{n-1})$ pour tout entier n > 0. Donc une suite strictement croissante ne peut appartenir à A.

- 2. Soit $z = (z_n)_{n \in \mathbb{N}}$ une suite réelle vérifiant : $\forall n \in \mathbb{N}^*, \ z_{n+1} = \frac{1}{2}(z_n + z_{n-1}).$
 - (a) Une telle suite est récurrente linéaire d'ordre 2 à coefficients constants. Son équation caractéristique est : $2r^2-r-1=0$ qui a pour racines 1 et -1/2 Donc il existe deux constantes réelles α et β telles que l'on a :

$$\forall n \in \mathbb{N}, \ z_n = \alpha + \beta \left(-\frac{1}{2} \right)^n$$

(b) On utilise la réciproque de la propriété ci-dessus :

Soit la suite définie par $z_n = 1 + (-1/2)^n$. Elle est solution de $z_{n+1} = \frac{1}{2}(z_n + z_{n-1})$ et est positive $((-1/2)^n \ge -1 \text{ pour tout entier } n)$

Donc elle est élément de A. Mais elle n'est pas monotone :

$$z_0 = 2 > z_1 = 1/2 < z_2 = 3/4$$

Donc il existe des (au moins une) suites appartenant à A et non monotones.

3. Soit $a=(a_n)_{n\in\mathbb{N}}$ un élément de A et b la suite définie par : $\forall n\in\mathbb{N},\ b_n=\left(-\frac{1}{2}\right)^n$. (c'est la suite u' du 3.) On définit alors la suite c par : $c_0=a_0$ et $\forall n\in\mathbb{N}^*,\ c_n=a_n+\frac{1}{2}a_{n-1}$.

(a) Pour tout
$$n \ge 1$$
 on $a: c_n - c_{n+1} = a_n + \frac{1}{2}a_{n-1} - \left(a_{n+1} + \frac{1}{2}a_n\right) = \frac{1}{2}\left(a_n + a_{n-1}\right) - a_{n+1} \ge 0$ car $a \in A$

Donc $c_{n+1} \le c_n$ et la suite c est décroissante.

Comme pour tout $n \in \mathbb{N}$: $a_n \ge 0$ alors $c_n \ge 0$ et la suite c est décroissante et minorée par 0 donc convergente vers un réel $\ell \ge 0$

(b) La démonstration de $\sum_{k=0}^{n} \left(-\frac{1}{2}\right)^k c_{n-k} = a_n$ ne se prête pas à la récurrence car n apparaît aussi à l'intérieur de la somme, et l'on n'a pas de relation simple entre c_{n+1-k} et c_{n-k}

On a deux expressions pour $c_{n-k} = a_{n-k} + \frac{1}{2}a_{n-k-1}$ si $k \le n-1$ et $c_{n-n} = a_0$

Il faudra donc découper la somme. Et pour cela, que $n \geqslant 1$

Pour
$$n = 0$$
: $\sum_{k=0}^{0} \left(-\frac{1}{2}\right)^k c_{0-k} = c_0 = a_0$

Et pour tout entier naturel n > 0,

$$\sum_{k=0}^{n} \left(-\frac{1}{2}\right)^{k} c_{n-k} = \sum_{k=0}^{n-1} \left(-\frac{1}{2}\right)^{k} c_{n-k} + a_{0}$$

$$= \sum_{k=0}^{n-1} \left(-\frac{1}{2}\right)^{k} \left(a_{n-k} + \frac{1}{2}a_{n-k-1}\right) + a_{0}$$

$$= \sum_{k=0}^{n-1} \left(-\frac{1}{2}\right)^{k} a_{n-k} + \sum_{k=0}^{n-1} \left(-\frac{1}{2}\right)^{k} \frac{1}{2}a_{n-k-1} + a_{0}$$

$$= \sum_{k=0}^{n-1} \left(-\frac{1}{2}\right)^{k} a_{n-k} - \sum_{k=0}^{n-1} \left(-\frac{1}{2}\right)^{k+1} a_{n-k-1} + a_{0} \quad \text{r\'eindex\'e} \ h = k+1$$

$$= \sum_{k=0}^{n-1} \left(-\frac{1}{2}\right)^{k} a_{n-k} - \sum_{k=0}^{n} \left(-\frac{1}{2}\right)^{k} a_{n-k} + a_{0}$$

 $= a_n - a_0 + a_0 = a_n$

On a donc b*c=a