Correction du DS nº 1

Exercice 1. 1. (a) $\exists x \in \mathbb{R}, x \geqslant 0 \text{ ou } x^2 < 0.$

- (b) $\exists x \in \mathbb{R}, \ x \geqslant 1 \ et \ x^2 \not\in [2; +\infty[.$
- 2. (a) $\sqrt{x^2 + 1} < x + 1 \Rightarrow 0 < x + 1 \Leftrightarrow x \in]-1; +\infty[$. Pour $x \in]-1; +\infty[$ on a:

$$\sqrt{x^2+1} < x+1 \Leftrightarrow x^2+1 < (x+1)^2 \ car \ la \ foncion \ carr\'ee \ est \ strictement \ croissante \ sur \ [0\,;+\infty[$$

$$\Leftrightarrow x^2+1 < x^2+2x+1$$

$$\Leftrightarrow 0 < 2x$$

$$\Leftrightarrow 0 < x$$

 $Donc S =]0; +\infty[$

(b)

$$|3x - 1| \le |x - 3| \Leftrightarrow |3x - 1|^2 \le |x - 3|^2$$

$$\Leftrightarrow 9x^2 - 6x + 1 < x^2 - 6x + 9$$

$$\Leftrightarrow 8x^2 - 8 \le 0$$

$$\Leftrightarrow x^2 - 1 \le 0$$

En utilisant un tableau de signes on obtient S = [-1; 1].

(c) On $a |x^2 - 1| < 2x^2 - 3x + 1 \Leftrightarrow f(x) > 0$ où $f(x) = 2x^2 - 3x + 1 - |x^2 - 1|$. $Sur]-\infty; -1] \cup [1; +\infty[, |x^2 - 1| = x^2 - 1 \text{ et } f(x) = x^2 - 3x + 2.$ $\Delta = 1, x_1 = \frac{3-1}{2} = 1 \text{ et } x_2 = \frac{3+1}{2} = 2. \text{ En utilisant un tabeau de signes et en tenant compte du fait que } x \in]-\infty; -1] \cup [1; +\infty[\text{ on a } x \in]-\infty; -1] \cup]2; +\infty[$ $Sur]-1; 1[, |x^2 - 1| = -x^2 + 1 \text{ et } f(x) = 3x^2 - 3x = 3x(x-1). \text{ En utilisant un tabeau de signes et en tenant compte du fait que } x \in]-1; 1[, \text{ on a } S_2 =]-1; 0[.$ $On \ a \ S = S_1 \cup S_2 =]-\infty; 0[\cup]2; +\infty[$

3.

$$A = \frac{\sqrt{2}(3 - 2\sqrt{3})}{3(3 - 2\sqrt{3})}$$
$$= \frac{\sqrt{2}}{3}.$$

$$B = |3 - 2\sqrt{2}|$$
$$= 3 - 2\sqrt{2}.$$

$$car 3^2 = 9 > (2\sqrt{2})^2 = 8$$

4. Montrons par récurrence que pour tout entier naturel $n \ge 3$ on a $4^n \ge (2n+1)^2$.

Soit $\mathcal{P}(n)$: « $4^n \geqslant (2n+1)^2$ ».

On a $4^3 = 64$ et $(2 \times 3 + 1)^2 = 49$ donc $\mathcal{P}(3)$ est vraie.

Soit $n \in \mathbb{N}$ avec $n \geqslant 3$, on suppose que $\mathcal{P}(n)$ est vraie et on veut démontrer que $\mathcal{P}(n+1)$ est vraie, c'est à dire que $4^{n+1} \geqslant (2n+3)^2$.

En effet, $4^{n+1} = 4 \times 4^n \geqslant 4(2n+1)^2$. Or $4(2n+1)^2 - (2n+3)^2 = (4n+2)^2 - (2n+3)^2 = (2n-1)(6n+5)$ qui est bien positif dès que $n \geqslant 3$ car 2n-1>0 si $n \geqslant 3$ et 6n+5>0), c'est à dire, $4(2n+1)^2 > (2n+3)^2$. D'où $4^{n+1} \geqslant (2n+3)^2$. Donc $\mathcal{P}(n+1)$ est vraie.

Conclusion: pour tout entier $n \ge 3$, $4^n \ge (2n+1)^2$.

5. Soit n > 1 un entier naturel. Calculer:

disp(S)

$$(a) \ S = \sum_{k=2}^{n} \frac{3^{2k}}{5^k}, \quad T = \sum_{k=2}^{n} \left((2k+1)(k^2-1) \right), \quad U = \sum_{k=1}^{n} \left(\frac{1}{k^2} - \frac{1}{k^2+2k+1} \right)$$

$$S = \sum_{k=2}^{n} \frac{3^{2k}}{5^k} = \sum_{k=2}^{n} \frac{9^k}{5^k} = \sum_{k=2}^{n} \left(\frac{9}{5} \right)^k = \left(\frac{9}{5} \right)^2 \sum_{k=2}^{n} \left(\frac{9}{5} \right)^{k-2} = \left(\frac{9}{5} \right)^2 \sum_{j=0}^{n-2} \left(\frac{9}{5} \right)^j = \left(\frac{9}{5} \right)^2 \frac{\left(\frac{9}{5} \right)^{n-1} - 1}{\frac{9}{5} - 1}$$

$$Donc$$

$$S = \frac{81}{20} \left(\left(\frac{9}{5} \right)^{n-1} - 1 \right)$$

$$T = \sum_{k=2}^{n} \left((2k+1)(k^2-1) \right) = \sum_{k=1}^{n} \left((2k+1)(k^2-1) \right) = \sum_{k=1}^{n} \left(2k^3 + k^2 - 2k - 1 \right)$$

$$T = 2 \sum_{k=1}^{n} k^3 + \sum_{k=1}^{n} k^2 - 2 \sum_{k=1}^{n} k - \sum_{k=1}^{n} 1 = \frac{n^2(n+1)^2}{2} + \frac{n(n+1)(2n+1)}{6} - n(n+1) - n = \frac{n(3n^3 + 8n^2 - 11)}{6}.$$

$$Remarque: \quad On \ peut \ montrer \ que \ T = \frac{n(n-1)(3n^2 + 11n^2 + 11)}{6}.$$

$$U = \sum_{k=1}^{n} \left(\frac{1}{k^2} - \frac{1}{k^2 + 2k + 1} \right) = \sum_{k=1}^{n} \left(\frac{1}{k^2} - \frac{1}{(k+1)^2} \right) = 1 - \frac{1}{(n+1)^2} \ (somme \ t \ eles copique).$$

$$(b) \ n = input \ (\ 'Donner \ une \ valeur \ non \ nulle \ de \ n : \ ')$$

$$S = 0$$

$$for \ k = 1 : n$$

$$S = S + (2^*k + \%e) / (sqrt(k^2 + 2 + 1 + \% \ pi)$$

$$end$$