Exercice 11. On note X la variable aléatoire donnant le nombre de skieurs (autres que Killy) qui se présentent au téléski. D'après l'énoncé $X \hookrightarrow G(p)$. On note A l'événement : « Le skieur reprendra la même perche . » Le skieur reprendra la même perche si le nombre de skieurs qui sont passés entre temps vaut N-1. On a alors $P(A) = P(X = N - 1) = (1 - p)^{N-2}p$.

Exercice 12 (EML 2010).

Partie I

1.
$$X_1 \hookrightarrow \mathcal{G}(p) \ donc \ X_1(\Omega) = \mathbb{N}^* \ et \ \mathbb{P}(X_1 = k) = q^{k-1}p \ et \ E(X_1) = \frac{1}{p} \ et \ V(X_1) = \frac{q}{p^2}$$

2.
$$(\Delta = 0) = (X_1 = X_2) = \bigcup_{k=1}^{+\infty} (X_1 = k \cap X_2 = k)$$
 (incompatibles) donc

$$P(X_{1} = X_{2}) = \sum_{k=1}^{+\infty} P(X_{1} = k) P(X_{2} = k) indépendants$$

$$= \sum_{k=1}^{+\infty} q^{2(k-1)} p^{2} réindexé h = k - 1$$

$$= p^{2} \sum_{h=0}^{+\infty} q^{2h} avec |q^{2}| < 1$$

$$= \frac{p^{2}}{1 - q^{2}} = \frac{p^{2}}{(1 - q)(1 + q)}$$

Conclusion:
$$P(X_1 = X_2) = \frac{p}{1+q}$$

3. Soit $n \in \mathbb{N}$

(a)
$$(X_1 - X_2 = n) = \bigcup_k (X_2 = k \cap X_1 = n + k)$$
 avec comme contraintes $k \in \mathbb{N}^*$ et $n + k \in \mathbb{N}^*$ soit

$$(X_1 - X_2 = n) = \bigcup_{k=1}^{+\infty} (X_2 = k \cap X_1 = n + k) \ donc$$
$$P(X_1 - X_2 = n) = \sum_{k=1}^{+\infty} P(X_2 = k) P(X_1 = n + k)$$

(b) Somme que l'on calcule :

$$P(X_1 - X_2 = n) = \sum_{k=1}^{+\infty} q^{k-1} p q^{n+k-1} p = p^2 q^n \sum_{k=1}^{+\infty} q^{2(k-1)}$$
$$= p^2 q^n \frac{1}{1 - q^2} car |q^2| < 1$$
$$= \frac{p^2 q^n}{(1 - q)(1 + q)} = \frac{pq^n}{1 + q}$$

Or $|X_1 - X_2| = n \iff X_1 - X_2 = n$ ou $X_1 - X_2 = -n$ (incompatibles) avec $X_1 - X_2 = -n \iff X_2 - X_1 = n$ qui, par symétrie des rôles de X_1 et X_2 , aura donc la même probabilité

Finalement P (
$$|X_1 - X_2| = n$$
) = P ($X_1 - X_2 = n$) + P ($X_1 - X_2 = -n$)
Conclusion: P ($\Delta = n$) = $2\frac{pq^n}{1+q}$

4. (a) La série $\sum_{n\in\mathbb{N}} nP(\Delta=n)$ est à termes positifs donc l'absolue convergence équivaut à la convergence simple.

$$\sum_{n=0}^{N} n P\left(\Delta = n\right) = 0 + \sum_{n=1}^{N} 2n \frac{pq^n}{1+q} = 2 \frac{p}{1+q} \sum_{n=1}^{N} nq^n$$

$$\rightarrow 2 \frac{p}{1+q} \frac{q}{(1-q)^2} = 2 \frac{1}{1+q} \frac{q}{(1-q)}$$

Conclusion : Donc Δ a une espérance et $E(\Delta) = 2\frac{q}{1-q^2}$

(b) On a:

$$E((X_1 - X_2)^2) = E(X_1^2 - 2X_1X_2 + X_2^2)$$

$$= E(X_1^2) - 2E(X_1X_2) + E(X_2^2) \text{ indépendantes}$$

$$= E(X_1^2) - 2E(X_1)E(X_2) + E(X_2^2)$$

et comme X_1 et X_2 ont mêmes lois, elles ont même espérance donc

$$E((X_1 - X_2)^2) = 2[E(X_1^2) - E(X_1)]$$

= $2V(X_1)$

de plus $\Delta^2 = |X_1 - X_2|^2 = (X_1 - X_2)^2$ donc Δ^2 a une espérance et $E\left(\Delta^2\right) = 2V\left(X_1\right)$ Δ a donc une variance et

$$V(\Delta) = E(\Delta^{2}) - E(\Delta)^{2}$$

$$= 2\frac{q}{p^{2}} - \left(2\frac{q}{1-q^{2}}\right)^{2} = 2\frac{q}{p^{2}} - 4\frac{q^{2}}{p^{2}(1+q)^{2}}$$

$$= 2q\frac{(1+q)^{2} - 2q}{p^{2}(1+q)^{2}} = 2q\frac{1+2q+q^{2}-2q}{p^{2}(1+q)^{2}}$$

$$= 2q\frac{1+q^{2}}{p^{2}(1+q)^{2}}$$

Conclusion: $V\left(\Delta\right) = 2q \frac{1+q^2}{p^2 \left(1+q\right)^2}$

5. l'événement

$$A = \left[\min(X_1, X_2) + X_3 > \max(X_1, X_2)\right]$$

= $\left[X_3 > \max(X_1, X_2) - \min(X_1, X_2)\right]$

Si $X_1 \ge X_2$ alors $\max(X_1, X_2) - \min(X_1, X_2) = X_1 - X_2 = |X_1 - X_2| = \Delta$ et si $X_1 \le X_2$ alors $\max(X_1, X_2) - \min(X_1, X_2) = X_2 - X_1 = |X_1 - X_2| = \Delta$ Conclusion: Finalement $A = [X_3 > \Delta]$

6. (a) On décompose : $[X_3 > \Delta] = \bigcup_{k=0}^{+\infty} (\Delta = k \cap X_3 > k)$ incompatibles donc

$$P(X_3 > \Delta) = \sum_{k=0}^{+\infty} P(\Delta = k) P(X_3 > k)$$

 $car \Delta$ défini à partir de X_1 et X_2 est indépendant de X_3

(b) Avec, pour tout $k \in \mathbb{N}$: $P(X_3 > k) = q^k$ (on n'a que des échecs jusqu'à k)

on a donc

$$P(A) = P(\Delta = 0) P(X_3 > 0) + \sum_{k=1}^{+\infty} P(\Delta = k) P(X_3 > k)$$

$$= \frac{p}{1+q} 1 + \sum_{k=1}^{+\infty} 2 \frac{pq^k}{1+q} q^k$$

$$= \frac{p}{1+q} + 2 \frac{p}{1+q} \sum_{k=1}^{+\infty} (q^2)^k$$

$$= \frac{p}{1+q} \left[1 + 2q^2 \frac{1}{1-q^2} \right] car |q^2| < 1$$

$$= \frac{p}{1+q} \left[\frac{1-q^2+2q^2}{1-q^2} \right]$$

$$= \frac{1+q^2}{(1+q)^2}$$

Bilan : calculs très lourds et largement répétitifs, basé sur les mêmes décompositions

Partie II

 $X \hookrightarrow \mathcal{G}(p)$ et $Y \hookrightarrow \varepsilon(\lambda)$ et X et Y indépendantes.

1. Une densité de Y est
$$f(x) = \begin{cases} 0 & \text{si } x < 0 \\ \lambda e^{-\lambda x} & \text{si } x \geqslant 0 \end{cases}$$
 avec $E(Y) = \frac{1}{\lambda}$ et $V(\lambda) = \frac{1}{\lambda^2}$

2. On définit
$$Z = \frac{Y}{X}$$

(a) $(X=k)_{k\in\mathbb{N}^*}$ est un système complet d'événements donc

$$\begin{split} \mathbf{P}\left(Z\geqslant t\right) &= \sum_{k=1}^{+\infty}\mathbf{P}\left(X=k\cap\frac{Y}{X}\geqslant t\right)\\ &= \sum_{k=1}^{+\infty}\mathbf{P}\left(X=k\cap Y\geqslant tk\right)\ car\ k>0\\ &= \sum_{k=1}^{+\infty}\mathbf{P}\left(X=k\right)\mathbf{P}\left(Y\geqslant tk\right)\ indépendance \end{split}$$

(b) Or $P(Y \ge t) = e^{-\lambda t}$ pour tout $t \ge 0$ donc, pour tout $t \in [0, +\infty[$

$$\begin{split} \mathbf{P}\left(Z\geqslant t\right) &= \sum_{k=1}^{+\infty} q^{k-1} p \cdot e^{-\lambda t k} \\ &= \frac{p}{q} \sum_{k=1}^{+\infty} \left(q e^{-\lambda t}\right)^k \\ &= \frac{p}{q} q e^{-\lambda t} \frac{1}{1 - q e^{-\lambda t}} \ car \ \left|q e^{-\lambda t}\right| < 1 \\ &= \frac{p e^{-\lambda t}}{1 - q e^{-\lambda t}} \end{split}$$

Conclusion:
$$P(Z \geqslant t) = \frac{pe^{-\lambda t}}{1 - qe^{-\lambda t}}$$

(c) la fonction G de répartition de Z est donc donnée par $G(t) = 1 - \frac{pe^{-\lambda t}}{1 - qe^{-\lambda t}}$ si $t \geqslant 0$

Erreur: merci à Sebastien Guffroy.

On a $G(t) = P(Z \leqslant t) = 1 - P(Z > t)$ alors que c'est $P(Z \geqslant t)$ qui a été calculée.... Et ce n'est

qu'une fois que l'on sait que Z est à densité que l'on peut affirmer l'égalité de ces deux probabiltés. Or $P(X=k\cap Y=tk)=P(X=k)$ P(Y=tk)=0 donc (probabilités totales) P(Z=t)=0 et $P(Z\geqslant t)=P(Z>t)$

Et comme P(Y < 0) = 0 alors P(Z < 0) = 0 et G(t) = 0 si t < 0

La fonction G est donc continue sur $]-\infty,0[$ et sur $[0,+\infty[$ (quotient de fonctions continues car $1-qe^{-\lambda t}\neq 0)$

$$En\ t<0: G\left(t\right)=0\rightarrow0\ et\ G\left(0\right)=1-\frac{p}{1-q}=0\ donc\ G\ est\ continue\ en\ 0^{-}$$

 $Donc\ G\ est\ continue\ sur\ \mathbb{R}$

Elle est de plus C^1 sur \mathbb{R}^*

Conclusion : Z est à densité

Pour t > 0:

$$G'(t) = -p \frac{-\lambda e^{-\lambda t} \left(1 - q e^{-\lambda t}\right) - \lambda q e^{-\lambda t} e^{-\lambda t}}{\left(1 - q e^{-\lambda t}\right)^2}$$
$$= \lambda e^{-\lambda t} p \frac{1 - q e^{-\lambda t} + q e^{-\lambda t}}{\left(1 - q e^{-\lambda t}\right)^2}$$
$$= \frac{\lambda e^{-\lambda t} p}{\left(1 - q e^{-\lambda t}\right)^2}$$

$$\mathit{Une \ densit\'e \ de \ Z \ est \ g \ (t)} = G' \ (t) = \left\{ \begin{array}{cc} 0 & \mathit{si \ } t < 0 \\ \frac{\lambda e^{-\lambda t} p}{\left(1 - q e^{-\lambda t}\right)^2} & \mathit{si \ } t > 0 \end{array} \right.$$

Exercice 13. Une étude statistique sur le sexe des bébés a montré que sur 100 naissances, 52 bébés sont des garçons et 48 sont des filles. On suppose que les évènements "accoucher d'un garçon" et "accoucher d'une fille" sont indépendants. Virginie a eu 4 bébés.

- 1. Le nombre de garçon qu'a eu Virginie, noté G suit donc une loi binomiale de paramètres 4 et 0,52.
 - (a) « autant de garçons que de filles »= [G=2] et $\mathbb{P}(G=2) = \binom{4}{2}0,52^20,48^2 = 6 \times 0,52^2 \times 0,48^2 \approx 0,374.$
 - (b) « un seul garçon »= [G=1] et $\mathbb{P}(G=1)=\binom{4}{1}0,52^10,48^3=4\times0,52\times0,48^3\approx0,230$.
 - (c) Sachant que le premier enfant est une fille, la variable aléatoire G' qui donne le nombre de garçon sur les trois derniers enfants suit une loi binomiale de paramètres 3 et 0,52.

On veut ici calculer
$$\mathbb{P}(G'=1) = \binom{3}{1}0,52^10,48^2 = 3 \times 0,52 \times 0,48^2 \approx 0,359.$$

(d) Sachant que le premier enfant est un garçon, la variable aléatoire G' qui donne le nombre de garçon sur les trois derniers enfants suit une loi binomiale de paramètres 3 et 0,52.

On veut ici calculer
$$\mathbb{P}(G'=0) = \binom{3}{0}0, 52^00, 48^3 = 0, 48^3 \approx 0, 111.$$

- (e) L'ordre des enfants ne change rien et c'est donc la même réponse que la c).
- 2. On suppose que Virginie a eu 2 garçons et 2 filles et que son premier bébé est une fille. Calculer la probabilité pour que :
 - (a) Cela revient donc à calculer, par la formule des probabilités conditionnelles :

$$\frac{\mathbb{P}(FFGG)}{\mathbb{P}(FFGG) + \mathbb{P}(FGFG) + \mathbb{P}(FGGF)} = \frac{1}{3}, \text{ après simplification}.$$

- (b) idem
- (c) $\frac{2}{3}$ par le même raisonnement.

On note:

- * A : « le premier bébé de Virginie est une fille »
- \star B : « Virginie a exactement 2 garçons »

$$\begin{split} \mathbb{P}(A) &= 0,48 \ et \ \mathbb{P}(B) = 6 \times 0,48^2 \times 0,52^2 \\ et \ \mathbb{P}(A \cap B) &= \mathbb{P}(FFGG \cup FGFG \cup FGGF) = 3 \times 0,48^2 \times 0,52^2 \neq \mathbb{P}(A)\mathbb{P}(B). \end{split}$$

Il n'y a pas indépendance mais « presque » car $6 \times 0, 48 \approx 3$. En fait, on a indépendance si on suppose que la probabilité d'avoir un garçon est 0,5...

Exercice 14.

Une urne contient des boules blanches et noires. On suppose que la probabilité de piocher une blanche vaut $p \in]0,1[$. On effectue des tirages successifs avec remise.

Soit X_1 la variable aléatoire égale au rang d'apparition de la première boule blanche.

1. Reconnaître la loi de X_1 et donner la valeur de $E(X_1)$ et de $V(X_1)$. On a $X_1 \hookrightarrow G(p)$. Donc $X_1(\Omega) = \mathbb{N}^*$ et pour tout $k \in \mathbb{N}^*$ Donc $P(X_1 = k) = (1-p)^{k-1}p$, $E(X_1) = \frac{1}{n}$ et $V(X_1) = \frac{1-p}{n^2}$.

2. Soit X_2 la variable aléatoire égale au rang d'apparition de la deuxième boule blanche. Déterminer la loi de X_2 ainsi que son espérance.

 $X_2(\Omega) = \{2, 3, \cdots\}$. On rappelle que $(X_1 = n)_{n \in \mathbb{N}^*}$ est un SCE, d'où d'après la formules des probabilités totales on a

$$P(X_2 = k) = \sum_{n=1}^{+\infty} P(X_1 = n) P_{(X_1 = n)}(X_2 = k). \text{ Or si } n \geqslant k, \ P_{(X_1 = n)}(X_2 = k) = 0 \text{ et sinon } P_{(X_1 = n)}(X_2 = k)$$

$$k) = (1-p)^{k-n-1} p, \text{ d'où } P(X_2 = k) = \sum_{n=1}^{k-1} P(X_1 = n) P_{(X_1 = n)}(X_2 = k) = \sum_{n=1}^{k-1} (1-p)^{n-1} p(1-p)^{k-n-1} p = (k-1)(1-p)^{k-2} p^2.$$

Exercice 15. On considère une urne contenant une boule noire et quatre boules blanches. On effectue l'expérience aléatoire suivante :

- On commence par piocher des boules de l'urne une à une avec remise jusqu'à obtenir la boule noire (que l'on remet aussi dans l'urne).
 On définit la variable aléatoire N égale au nombre de tirages avec remise nécessaires pour obtenir la boule noire.
- * Puis, si N prend une valeur entière positive non nulle notée n, on réalise alors une seconde série de n tirages dans l'urne, toujours avec remise. On définit la variable aléatoire X égale au nombre de fois où la boule noire a été obtenue dans cette seconde série de tirages.
- 1. Déterminer la loi de la variable aléatoire N. Donner son espérance. $N \hookrightarrow G(p)$ où $p = \frac{1}{5}$ donc $E(N) = \frac{1}{n} = 5$.
- 2. Soit $k \in \mathbb{N}$ et $n \in \mathbb{N}^*$. Déterminer la probabilité conditionnelle $P_{(N=n)}(X=k)$. Si $k \leq n$, $P_{(N=n)}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$ sinon $P_{(N=n)}(X=k) = 0$.
- 3. $P(X=0)=\frac{4}{9}$, suivre la même démarche que dans cas général ci-dessous. Cas général :

 $(N=n)_{n\in\mathbb{N}}$ est un SCE, donc d'après la formule des probabilités totales on a

$$P(X = k) = \sum_{n=0}^{\infty} P_{(N=n)}(X = k)P(N = n) = \sum_{n=k}^{\infty} P_{(N=n)}(X = k)P(N = n) \ (d'après \ 1)).$$

$$Donc\ P(X=k) = \sum_{n=k}^{\infty} \binom{n}{k} p^k (1-p)^{n-k} (1-p)^{n-1} p = (\frac{p}{1-p})^{k+1} \sum_{n=k}^{\infty} \binom{n}{k} x^n = (\frac{p}{1-p})^{k+1} \frac{x^k}{(1-x)^{k+1}}$$

$$avec\ x = (1-p)^2 = \frac{16}{25}\ (\hat{a}\ v\'erifier)\ .$$

Après simplification (à vérifier) on obtient :

$$P(X=k) = \frac{25}{36} \left(\frac{4}{9}\right)^k.$$

4. A faire.

Exercice 16.

Soient a et b deux réels tels que 0 < a < 1 et 0 < b < 1.

On effectue une suite d'expérience aléatoires consistant à jeter simultanément deux pièces de monnaie notées A et B. On suppose que ces expériences sont indépendantes et qu'à chaque expérience les résultats des deux pièces sont indépendants. On suppose que, lors d'une expérience, la probabilité que A donne "pile" est a, et que la probabilité que B donne "pile" est b.

Soit X le nombre d'expériences qu'il faut réaliser avant que A donne "face" pour la première fois, et Y le nombre d'expériences qu'il faut réaliser avant que B donne "face" pour la première fois.

- 1. Quelles sont les lois de probabilités de X et de Y? Calculer E(X).
- 2. Calculer la probabilité de l'évènement (X = Y). Interprétation.
- 3. Trouver, pour $k \in \mathbb{N}$, la valeur de P(X > k). En déduire les probabilités P(X > Y) et $P(X \geqslant Y)$. Interprétation.