Exercice 1

- 1. Suite géométrique donnée sous une forme explicite.
- 2. Suite géométrique définie par récurrence.
- 3. Suite arithmétique donnée sous une forme explicite. Décomposer pour écrire cette expression sous la forme classique $c_0 + nr$.
- 4. Suite arithmétique définie par récurrence.
- 5. $e_8 = e_3 + (8-3)r$ (relation entre deux termes quelconques de la suite. On trouve ensuite r. Écrire ensuite une relation reliant e_3 et e_0 pour calculer e_0
- 6. Mêmes idées que la question précédente, à adapter au cas d'une suite géométrique.
- 7. L'exemple le plus facile! La suite est CONSTANTE.
- 8. Mêmes idées que les questions 5 et 6, et aussi simple si on est prêt à trouver une raison irrationnelle...

Exercice 2

1. On trouve $u_1 = \sqrt{10}$, $u_2 = \sqrt{11}$, $u_3 = \sqrt{12}$. Comme on a aussi $u_0 = 3 = \sqrt{9}$, cela conduit à la conjecture suivante : pour tout $n \in \mathbb{N}$, $u_n = \sqrt{n+9}$, qu'on démontre par récurrence. Initialisation : la propriété est vrai pour n = 0, $u_0 = 3 = \sqrt{0+9}$ Hérédité :

supposons que pour un entier naturel n $u_n = \sqrt{n+9}$ alors

$$u_{n+1} = \sqrt{1 + (\sqrt{n+9})^2} = \sqrt{9 + n + 1}$$

Donc la propriété est vraie au rang n+1. Conclusion : pour tout n $u_n = \sqrt{n+9}$

Remarque : on peut retrouver ce résultat en montrant que cette suite est bien définie, positive et que la suite (u_n^2) est arithmétique de raison 1.

2. Première façon utilisant la récurrence Commencer par raisonner ainsi : calculer u_1 et u_2 grâce à la relation de récurrence. On peut ensuite faire le raisonnement suivant : si la formule explicite donnée est vraie, je peux alors calculer u_0 , u_1 et u_2 (qui sont connues) en fonction de a, b et c (c'est le même principe que la méthode pour les suites récurrentes linéaires d'ordre 2 pour trouver la valeur de λ et μ). On en déduit ensuite a, b et c en résolvant le système obtenu. On trouve a=1,b=-12 et c=0. Ce n'est pas fini. Il reste à montrer que la formule est valable pour tout $n \in \mathbb{N}$ (alors qu'on sait juste pour le moment qu'elle est vraie pour n=0, 1 et 2. On montre cela par récurrence en remplaçant a, b et c par les valeurs trouvées. L'hérédité se fait à l'identique par rapport au premier point de l'exercice.

Deuxième façon n'utilisant pas la récurrence

On a pour tout $k \in \mathbb{N}, \ u_{k+1} - u_k = 2k - 11$ d'après les données de l'énoncé.

D'où pour tout
$$n \in \mathbb{N}^*$$
, $\sum_{k=0}^{n-1} (u_{k+1} - u_k) = \sum_{k=0}^{n-1} (2k-11)$. Or $n \in \mathbb{N}^*$, $\sum_{k=0}^{n-1} (u_{k+1} - u_k) = u_n - u_0 = u_n$ (télescopage) et $\sum_{k=0}^{n-1} (2k-11) = 2\sum_{k=0}^{n-1} k - \sum_{k=0}^{n} 11 = n(n-1) - 11n = n^2 - 12n$. Donc $a = 1, b = -12$ et $c = 0$.

Exercice 4

On définit $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ par $a_0=0$ et $b_0=12$, puis pour $n\in\mathbb{N}$: $a_{n+1}=\frac{2a_n+b_n}{3}$ et $b_{n+1}=\frac{a_n+3b_n}{4}$

1. On considère la suite (u_n) définie, pour $n \in \mathbb{N}$, par $u_n = b_n - a_n$.

(a) On a
$$u_{n+1} = b_{n+1} - a_{n+1} = \frac{2a_n + b_n}{3} - \frac{a_n + 3b_n}{4} = \frac{5a_n - 5b_n}{12} = \frac{5}{12}u_n$$
. Donc (u_n) est une suite géométrique de raison $\frac{5}{12}$ et son premier terme $u_0 = b_0 - a_0 = -12$.

(b) On déduit de a) que pour tout
$$n \in \mathbb{N}$$
, $u_n = \left(\frac{5}{12}\right)^n u_0$, soit $u_n = \frac{5^n}{12^{n-1}}$.

- 2. On considère la suite (v_n) définie, pour tout entier naturel n, par $v_n = 4b_n + 3a_n$.
 - (a) $v_{n+1} = 4b_{n+1} + 3a_{n+1} = \frac{4(a_n + 3b_n)}{4} + \frac{3(2a_n + b_n)}{3} = 3a_n + 4b_n = v_n.$ Donc la suite (v_n) est constante.
 - (b) On a pour tout $n \in \mathbb{N}$, $v_n = v_0 = 4b_0 + 3a_0 = 48$.

3

- 4. En résolvant pour $n \in \mathbb{N}$, le système $\begin{cases} u_n &= b_n a_n \\ v_n &= 4b_n + 3a_n \end{cases}$ On trouve pour tout $n \in \mathbb{N}$, $\begin{cases} a_n &= -\frac{4}{7} \frac{5^n}{12^{n-1}} + \frac{1}{7} \times 48 \\ b_n &= \frac{3}{7} \times \frac{5^n}{12^{n-1}} + \frac{1}{7} \times 48 \end{cases}$
- 5. On obtient

$$S_n = \sum_{k=0}^{n} b_k$$

$$S_n = \frac{36}{7} \sum_{k=0}^{n} \left(\frac{5}{12}\right)^k + \frac{1}{7} \sum_{k=0}^{n} 48$$

$$S_n = \frac{36}{7} \times \frac{1 - \left(\frac{5}{12}\right)^{n+1}}{1 - \frac{5}{12}} + \frac{48}{7}(n+1)$$

$$S_n = \frac{432}{49} \times \left(1 - \left(\frac{5}{12}\right)^{n+1}\right) + \frac{48}{7}(n+1)$$

Exercice 5 (Ecriture rationnelle vs écriture périodique)

On remarque que $u_1 = \frac{1}{100}u_0 = 0,0027$ et $u_2 = \frac{1}{100}u_1 = 0,000027$. Ainsi $0,2727 = u_0 + u_1$ et $0,272727 = u_0 + u_1 + u_2$. Ainsi, pour $n \in \mathbb{N}$, $S_n = \sum_{k=0}^n u_k = \underbrace{0,27\cdots 27}_{n-1\ fois}$. Or, il est facile de calculer explicitement S_n (somme de référence!). Le nombre cherché est ensuite obtenu via un calcul simple de limite (de référence aussi). Pour le nombre, $0,999999\cdots$, on adapte avec la suite géométrique de raison $\frac{1}{10}$ et de premier terme 0,9. Le reste est

Exercice 6 (Une suite homographique)

1. Pour tout $n \in \mathbb{N}$, $v_{n+1} = \frac{2 - u_{n+1}}{2u_{n+1}} = \frac{2 - \frac{3u_n}{2u_n - 1}}{2\frac{3u_n}{2u_n - 1}} = \frac{u_n - 2}{6u_n} = -\frac{1}{3}v_n$. $v_0 = \frac{2 - \frac{1}{4}}{2 \times \frac{1}{2}} = \frac{7}{2}.$

La suite (v_n) est géométrique de raison $-\frac{1}{3}$ et de premier terme $v_0 = \frac{7}{2}$.

2. Ainsi pour tout $n \in \mathbb{N}$, $v_n = \frac{7}{2} \times \left(-\frac{1}{3}\right)^n$, mais $v_n = \frac{2 - u_n}{2u_n}$ ce qui donne $u_n = \frac{2}{2v_n + 1}$. En conclusion pour tout $n \in \mathbb{N}$, $u_n = \frac{2}{7\left(-\frac{1}{3}\right)^n + 1}$.

Exercice 7

identique.

[Changement de suites divers]

1. (a)
$$\forall n \in \mathbb{N}^*, v_{n+1} = \frac{n+2}{n+1}u_{n+1} = \frac{n+2}{n+1} \times 2\frac{(n+1)^2}{n(n+2)}u_n = 2v_n.$$

$$v_1 = \frac{1+2}{1+1}u_0 = \frac{4}{3}. \text{ Ainsi la suite } (v_n) \text{ est une suite géométrique de raison 2 et de premier terme}$$

$$v_1 = \frac{4}{3}.$$

(b) Comme pour
$$n \in \mathbb{N}^*$$
, $v_n = \frac{n+1}{n}u_n$ et $v_n = \frac{4}{3}2^{n-1}$ alors $u_n = \frac{n}{n+1}v_n = \frac{n}{n+1} \times \frac{4}{3}2^{n-1}$.

2. (a) $u_0 = 3 > 1$.

Supposons que pour n fixé, $u_n > 1$. La fonction $x \mapsto \sqrt{x-1}+1$ est strictement croissante sur $]1; +\infty[$, alors $f(u_n) > f(1)$ soit $u_{n+1} > 1$.

On vient de démontrer à l'aide d'un raisonnement par récurrence que pour tout entier naturel n que

- (b) Montrons que la suite v définie par $v_n = \ln(u_n 1)$ est géométrique. $v_{n+1} = \ln(u_{n+1} - 1) = \ln(\sqrt{u_n - 1} + 1 - 1) = \ln(\sqrt{u_n - 1}) = \frac{1}{2}\ln(u_n - 1) = \frac{1}{2}v_n$. $v_0 = \ln(u_0 - 1) = \ln(2)$. Ainsi la suite (v_n) est une suite géométrique de raison $\frac{1}{2}$ et de premier terme ln(2).
- (c) En utilisant pour tout $n \in \mathbb{N}$, l'expression $v_n = \ln(u_n 1)$ on obtient que $u_n = e^{v_n} + 1$. Ce qui donne :

$$u_n = e^{\ln(2)(\frac{1}{2})^n} + 1 = 2^{\frac{1}{2^n}}$$

Exercice 8

1. Si $u_0=3$ et $\forall n\in\mathbb{N}, u_{n+1}\geqslant 2u_n$ alors démontrons à l'aide d'un raisonnement par récurrence que $\forall n \in \mathbb{N}, u_n \geqslant 3 \cdot 2^n.$

 $u_0 = 3 \text{ et } 3 \times 2^0 = 3 \text{ donc } u_0 \geqslant 3.$

Supposons que pour n fixé $u_n \ge 3 \times 2^n$. $u_{n+1}u_{n+1} \ge 2u_n \ge 2 \times \ge 3 \times 2^n = 3 \times 2^{n+1}$.

Ainsi on vient de démontrer que $\forall n \in \mathbb{N}, u_n \geqslant 3 \cdot 2^n$.

Comme 2 > 1, $\lim_{n \to +\infty} 2^n = +\infty$ par comparaison, on trouve $\lim_{n \to +\infty} u_n = +\infty$.

2. Si $v_0 = 3$ et $\forall n \in \mathbb{N}, v_{n+1} \leqslant \frac{1}{2}v_n$ alors démontrons à l'aide d'un raisonnement par récurrence que $\forall n \in \mathbb{N}, v_n \leqslant 3 \times \left(\frac{1}{2}\right)^n.$ $v_0 = 3 \text{ et } 3 \times 2^0 = 3 \text{ donc } v_0 \leqslant 3.$

Supposons que pour n fixé $v_n \leqslant 3 \times \left(\frac{1}{2}\right)^n$. $v_{n+1} \leqslant \frac{1}{2}v_n \leqslant \frac{1}{2} \times 3 \times \left(\frac{1}{2}\right)^n = 3 \times \left(\frac{1}{2}\right)^{n+1}$.

Ainsi on vient de démontrer que $\forall n \in \mathbb{N}, v_n \leqslant 3 \times \left(\frac{2}{2}\right)^n$.

Comme $\frac{1}{2} < 1$, $\lim_{n \to +\infty} \left(\frac{1}{2}\right)^n = 0$, sachant que (v_n) est positive, on en déduit par comparaison que $\lim_{n \to +\infty} v_n = 0.$

Exercice 9

Soit u de terme général $\frac{n!}{a^n}$.

1. Si 0 < a < 1:

on a $\lim_{n \to +\infty} a^n = 0$, et dans ce cas $\lim_{n \to +\infty} \frac{n!}{a^n} = +\infty$.

2. Si a>1:

(a)
$$\frac{u_{n+1}}{u_n} = \frac{(n+1)!}{a^{n+1}} \times \frac{a^n}{n!} = \frac{n+1}{a}$$
On en déduit que $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = +\infty$. A partir d'un certain rang $n_0, \frac{u_{n+1}}{u_n} \geqslant 2$.

(b) La suite u est strictement positive. Montrons à l'aide d'un raisonnement par r

(b) La suite u est strictement positive. Montrons à l'aide d'un raisonnement par récurrence que pour $n \geqslant n_0 \text{ alors} : u_n \geqslant 2^{n-n_0} u_{n_0}.$ $u_{n_0} 2^{n_0 - n_0} = u_0 \text{ donc } u_0 \geqslant u_{n_0} 2^{n_0 - n_0} = u_0.$

Supposons maintenant que pour $n \ge n_0$ fixé, $u_n \ge 2^{n-n_0}u_{n_0}$. D'après la question précédente, pour

 $n \geqslant n_0, \ u_{n+1} \geqslant 2u_n$ ce qui donne $u_{n+1} \geqslant 2\left(2^{n-n_0}u_{n_0}\right) = 2^{n-n_0+1}u_{n_0}$. On a démontré que pour tout $n \geqslant n_0, \ u_n \geqslant 2^{n-n_0}u_{n_0}$.

(c) Comme $u_0 > 0$ et 2 > 1 on en déduit que $\lim_{n \to +\infty} 2^{n-n_0} u_{n_0} = +\infty$ ce qui implique que $\lim_{n \to +\infty} u_n = +\infty$ d'après les théorèmes de comparaison.

Exercice 10

Soit u définie par $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{u_n + 12}$.

- 1. L'équation $P(X) = X^2 X 12 = 0$ admet deux solutions à savoir $X_1 = -3$ et $X_2 = 4$. Donc P(X) = (X 4)(X + 3) et $P(X) < 0 \Leftrightarrow X \in]-3$; 4[.
- 2. Montrons que pour tout $n \in \mathbb{N}$ la propriété $\mathcal{P}(n)$: " u_n est défini et $0 < u_n < 4$ " Pour n = 0, $u_n = 1$ est défini et $0 < u_n < 4$. Supposons que pour un entier naturel n, u_n est défini et $0 < u_n < 4$. Montrons que $u_{n+1} <$ est défini et $0 < u_{n+1} < 4$. En effet, la fonction $f: x \mapsto \sqrt{x+12}$ est strictement est croissante sur $]0; +\infty[$. Comme $u_n \in]0; +\infty[$

on a $u_{n+1} = f(u_n)$ est bien défini et $0 < f(0) = \sqrt{12} < u_{n+1} < f(4) = 4$. Donc $\mathcal{P}(n+1)$ est vraie. On conclut que pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.

3. Montrons que u est strictement croissante.

Première façon utilisant la récurrence

Montrons que pour tout $n \in \mathbb{N}$ la propriété $\mathcal{P}(n)$: " $u_n < u_{n+1}$ " Pour n = 0, $u_0 = 1 < u_1 = \sqrt{13}$ donc $\mathcal{P}(0)$ est vraie.

Supposons que pour un entier naturel n, $u_n < u_{n+1}$. Montrons que $u_{n+1} < u_{n+2}$. En effet, comme f est strictement croissante et $u_n < u_{n+1}$ d'après l'hypothèse de récurrence, on a $f(u_n) < f(u_{n+1})$, soit $u_{n+1} < u_{n+2}$.

On conclut que (u_n) est strictement croissante.

Deuxième façon utilisant la question 1

Pour tout
$$n \in \mathbb{N}$$
 on a $u_{n+1} - u_n = \sqrt{u_n + 12} - u_n = \frac{\sqrt{u_n + 12}^2 - u_n^2}{\sqrt{u_n + 12} + u_n} = \frac{-P(u_n)}{\sqrt{u_n + 12} + u_n}$.

Comme $u_n \in]0; 4[$, le dénominateur est strictement positif et le numérateur est strictement positif puisque P(X) < 0 pour tout $X \in]-3; 4[$, d'où $u_{n+1} - u_n > 0$. Donc la suite (u_n) est strictement croissante.

- 4. (a) (u_n) est croissante et majorée (d'près 2) et 3)),donc d'après le théorème de convergence monotone u converge vers une limite $l \in \mathbb{R}$.
 - (b) $0 < l \le 4$.
 - (c) Montrons que l vérifie P(l)=0. La fonction f est continue sur $]0; +\infty[$ et $l \in]0; +\infty[$, donc l est solution de l'équation x=f(x). Or, pour tout $x \in]0; +\infty[$, $f(x)=x \Leftrightarrow x+12=x^2 \Leftrightarrow P(x)=0$.
 - (d) D'après c) l est solution de P(x) = 0. Donc l = -3 ou l = 4. Mais l > 0 d'après b), donc l = 4.

Exrcice 13

- 1. (a) La fonction f est définie sur $]0;+\infty[$, elle est croissante comme de deux fonctions croissantes
 - (b) On a $f(x) x = \ln x$. Donc f(x) x est négatif sur [0; 1] et positif sur $[1; +\infty[$.
- 2. (a) D'après l'énoncé $u_0 > 1$ donc $u_0 \ge 1$.

Supposons pour n fixé que $u_n \ge 1$, alors $\ln(u_n) \ge 0$. Ainsi $u_{n+1} = \ln(u_n) + u_n \ge u_n$ or par hypothèse $u_n \ge 1$. Ainsi $u_{n+1} \ge 1$.

On a montré que pour tout n $u_n \ge 1$.

Pour tout $n \in \mathbb{N}$, $u_n > 1$ donc $u_{n+1} - u_n = \ln(u_n) \ge 0$. La suite (u_n) est donc croissante.

(b) Supposons par l'absurde que la suite est majorée, elle est donc convergent de limite l qui vérifie $l = l + \ln(l)$. (La fonction $f: x \mapsto x + \ln(x)$ est continue sur $]0; +\infty[$.

Ce qui veut dire que $\ln(l) = 0$ soit l = 1. On sait que la suite u est croissante et pour tout $u_n \ge 1$ donc $1 \le u_n \le \lim_{n \to +\infty} u_n = 1$, ce qui veut dire que la suite u est constante égale à 1. Absurde car $u_0 > 1$. La suite u est donc non majorée.

En résumé la suite u est croissante et non majorée, elle a donc pour limite $+\infty$.

(c) Soit v définie par $v_0 \in]0,1[$ et pour tout entier $n, v_{n+1} = f(v_n)$. Supposons par l'absurde que la suite est définie pour tout $n \in \mathbb{N}$. Comme précédemment on montre que la suite est décroissante non minorée et donc de limite $-\infty$. Il existe donc un rang n à partir duquel $v_n < 0$ ce qui empêche de définir $\ln(u_n)$ ou encore u_{n+1} . On en déduit alors que la suite n'est pas définie à partir d'un certain rang.

Exercice 14

1. Par décroissante de la fonction inverse, on peut écrire que pour $n, k \in \mathbb{N}^*$,

$$\frac{n}{n^2+n}\leqslant \frac{n}{n^2+k}\leqslant \frac{n}{n^2+1}$$

$$\sum_{k=1}^{n} \frac{n}{n^2 + n} \le \sum_{k=1}^{n} \frac{n}{n^2 + k} \le \sum_{k=1}^{n} \frac{n}{n^2 + 1}$$

Or
$$\sum_{k=1}^{n} \frac{n}{n^2 + n} = n \times \frac{n}{n^2 + n} = \frac{n^2}{n^2 + n}$$
.

Et
$$\sum_{k=1}^{n} \frac{n}{n^2 + 1} = n \times \frac{n}{n^2 + 1} = \frac{n^2}{n^2 + 1}$$
.

Dono

$$\frac{n^2}{n^2 + n} \leqslant \sum_{k=1}^n \frac{n}{n^2 + k} \leqslant \frac{n^2}{n^2 + 1}$$

$$\frac{n^2}{n^2+n} \leqslant w_n \leqslant \frac{n^2}{n^2+1}$$

2. Par le théorème d'encadrement $\lim_{n \to +\infty} w_n = \lim_{n \to +\infty} \frac{n^2}{n^2 + n} = \lim_{n \to +\infty} \frac{n^2}{n^2 + 1} = 1$.

Exercice 15

Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite de terme général : $\sum_{k=1}^n \frac{(-1)^k}{2k-1}$.

1. (a) Pour tout $n \ge 1 : 2n + 1$ est impair donc $(-1)^{2n+1} = -1$ et 2n + 2 est pair donc $(-1)^{2n+2} = 1$.

$$\frac{(-1)^{2n+1}}{2(2n+1)-1} + \frac{(-1)^{2n+2}}{2(2n+2)-1} = \frac{-1}{2(2n+1)-1} + \frac{1}{2(2n+2)-1} = \frac{-(2(2n+2)-1)+2(2n+1)-1}{(2(2n+2)-1)(2(2n+1)-1)} = \frac{-(2(2n+2)-1)+2(2n+1)-1}{(2(2n+2)-1)} = \frac{-(2(2n+2)-1)+2(2n+1)-1}{(2(2n+2)-1)} = \frac{-(2(2n+2)-1)+2(2n+1)-1}{(2(2n+2)-1)} = \frac{-(2(2n+2)-1)+2(2n+1)-1}{(2(2n+2)-1)} = \frac{-(2(2n+2)-1)+2(2n+1)-1}{(2(2n+2)-1)} = \frac{-(2(2n+2)-1)+2(2n+1)-1}{(2(2n+2)-1)} = \frac{-(2(2n+2)-1)+2(2n+1)+2(2n+1)+2(2n+1)+2($$

En développant et réduisant

$$\frac{(-1)^{2n+1}}{2(2n+1)-1} + \frac{(-1)^{2n+2}}{2(2n+2)-1} = \frac{-2}{(4n+1)(4n+3)}$$

(b) Pour tout n,

$$v_{n+1} - v_n = \sum_{k=1}^{2n+2} \frac{(-1)^k}{2k-1} - \sum_{k=1}^{2n} \frac{(-1)^k}{2k-1} = \sum_{k=2n+1}^{2n+2} \frac{(-1)^k}{2k-1} = \frac{(-1)^{2n+1}}{2(2n+1)-1} + \frac{(-1)^{2n+2}}{2(2n+2)-1}$$

D'après la première question, on en déduit que

$$v_{n+1} - v_n = \frac{-2}{(4n+1)(4n+3)} < 0$$

La suite v_n est bien décroissante.

2. Pour tout n,

$$w_{n+1} - w_n = \sum_{k=1}^{2n+3} \frac{(-1)^k}{2k-1} - \sum_{k=1}^{2n+1} \frac{(-1)^k}{2k-1} = \sum_{k=2n+2}^{2n+3} \frac{(-1)^k}{2k-1} = \frac{(-1)^{2n+2}}{2(2n+2)-1} + \frac{(-1)^{2n+3}}{2(2n+3)-1}$$

Or
$$(-1)^{2n+3} = -1$$
.

$$\frac{(-1)^{2n+2}}{2(2n+2)-1} + \frac{(-1)^{2n+3}}{2(2n+3)-1} = \frac{2(2n+3)-1-(2(2n+2)-1)}{(2(2n+2)-1)(2(2n+3)-1)} = \frac{2}{(4n+3)(4n+5)} > 0$$

On en déduit que

$$w_{n+1} - w_n > 0$$

La suite w_n est bien croissante.

3.
$$w_n - v_n = \sum_{k=1}^{2n+1} \frac{(-1)^k}{2k-1} - \sum_{k=1}^{2n} \frac{(-1)^k}{2k-1} = \frac{(-1)^{2n+1}}{2(2n+1)-1} = \frac{(-1)^{2n+1}}{4n+1} \text{ et } \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{4n+1} = 0$$

4. Les deux suites v et w sont adjacentes, elles convergent vers une même limite l.

Exercice 16 (Changement de suite (difficile)[ECRICOME 1999]

Soit (x_n) une suite numérique qui vérifie, pour tout entier naturel n, la relation :

$$x_{n+2} = \frac{1}{3}x_{n+1} + \frac{1}{3}x_n$$

1. La suite (x_n) est récurrente linéaire du second orde à coefficients constants.

Son équation caractéristique $r^2 - \frac{1}{3}r - \frac{1}{3} = 0$ a pour discriminant $\Delta = \frac{1}{9} + \frac{4}{3} = \frac{13}{9}$ et pour solutions $r_1 = \frac{1+\sqrt{13}}{6}$ et $r_2 = \frac{1-\sqrt{13}}{6}$.

Il existe donc deux réels A et B tels que pour tout $n \in \mathbb{N}$: $x_n = A(r_1)^n + B(r_2)^n$.

Et ces deux racines appartenant à]-1,1[on a alors $(r_1)^n \to 0$ et $(r_2)^n \to 0$.

Conclusion: $\lim_{n\to+\infty} x_n = 0$

a et b sont deux réels supérieurs ou égaux à 1

2. On étudie la suite numérique (u_n) définie par : $u_0 = a$ $u_1 = b$ et pour tout entier naturel n :

$$u_{n+2} = \sqrt{u_n} + \sqrt{u_{n+1}}$$

Si u a une limite finie ℓ alors $\ell \geqslant 1$ et u_{n+1} et u_{n+2} également.

La fonction $\sqrt{}$ étant continue sur \mathbb{R}^+ et ℓ en étant élément, $\ell = \sqrt{\ell} + \sqrt{\ell}$

donc $\ell^2 = 4\ell$ d'où $\ell = 4$ ou $\ell = 0$ et comme $\ell \geqslant 1$

Conclusion : la seule limite possible de la suite (u_n) est 4.

3. On se propose d'établir la convergence de la suite (u_n) par l'étude d'une suite auxiliaire (v_n) définie, pour tout entier naturel n, par :

$$v_n = \frac{1}{2}\sqrt{u_n} - 1$$

(a) On a $u_n = (2v_n + 1)^2$ alors si $\lim_{n \to +\infty} v_n = 0$ alors $\lim_{n \to +\infty} u_n = 4$.

(b) On simplifie l'égalité par équivalence : $(2+v_n\neq 0$)

$$v_{n+2} = \frac{v_{n+1} + v_n}{2(2 + v_{n+2})} \iff 2(2 + v_{n+2})v_{n+2} = v_{n+1} + v_n$$

$$\iff 2\left(2 + \frac{1}{2}\sqrt{u_{n+2}} - 1\right)\left(\frac{1}{2}\sqrt{u_{n+2}} - 1\right) = \frac{1}{2}\sqrt{u_{n+1}} - 1 + \frac{1}{2}\sqrt{u_n} - 1$$

$$\iff 2\left(\frac{1}{4}u_{n+2} - 1\right) = \frac{1}{2}\sqrt{u_{n+1}} + \frac{1}{2}\sqrt{u_n} - 2$$

$$\iff u_{n+2} = \sqrt{u_{n+1}} + \sqrt{u_n}$$

cette égalité étant vraie, la premièer également.

Conclusion: pour tout entier naturel $n: v_{n+2} = \frac{v_{n+1} + v_n}{2(2 + v_{n+2})}$.

Comme $u_{n+2} \geqslant 1$ alors $v_{n+2} = \frac{1}{2} \sqrt{u_{n+2}} - 1 \geqslant -\frac{1}{2}$ et $2(2 + v_{n+2}) \geqslant 3$

donc $v_{n+2} \leq \frac{1}{3} (v_{n+1} + v_n)$

Et comme (inégaité triangulaire) $|a+b|\leqslant |a|+|b|$ pour tout a et b réel :

Conclusion: $|v_{n+2}| \le \frac{1}{3} (|v_{n+1}| + |v_n|).$

(c) On note (x_n) la suite définie par : $x_0 = |v_0|$, $x_1 = |v_1|$ et, pour tout entier naturel n,

$$x_{n+2} = \frac{1}{3}x_{n+1} + \frac{1}{3}x_n$$

On procède comme précédemment avec l'HR sur n et n + 1:

Pour n = 0 on a $x_0 = |v_0|, x_1 = |v_1|$

Soit $n \in \mathbb{N}$ tel que $|v_n| \leqslant x_n$ et $|v_{n+1}| \leqslant x_{n+1}$ alors

$$|v_{n+2}| \le \frac{1}{3}(|v_{n+1}| + |v_n|)$$

 $\le \frac{1}{3}(x_n + x_{n+1}) = x_{n+2}$

Conclusion: pour tout entier naturel $n, 0 \le |v_n| \le x_n$

et comme $x_n \to 0$ d'après la première question, alors par encadrement :

Conclusion: $v_n \to 0$ quand $n \to +\infty$

Exercice 17

- 1. (a) Soit f la fonction définie par : pour tout $x \in \mathbb{R}$, $f(x) = \frac{3x+1}{x}$ et g la composée $g = f \circ f$ définie par g(x) = f(f(x)). Etudier les sens de variation sur \mathbb{R}^+ de f et de g.
- (b) Résoudre sur \mathbb{R} l'équation de f(x) = x, puis g(x) = x. (On montrera qu'elles ont les mêmes solutions solutions a et b avec b < 0 < a, que b = -1/a et que b = 3 - a)

Soit u la suite définie par : $u_0 > 0$ et pour tout entier n, $u_{n+1} = f(u_n)$.

- 2. Montrer que, $\forall n, u_n$ est défini et $u_n > 0$
- 3. On suppose dans cette question que $u_0 = 1$. On définit les suites v et w par : $\forall n, v_n = u_{2n}$ et $w_n = u_{2n+1} = f(v_n)$. (a) Montrer que pour tout entier $n, v_{n+1} = g(v_n)$.
 - (b) Montrer que la suite v et croissante majorée par a. En déduire que v converge vers a.
- (c) En déduire que w converge également vers a. Conclure pour u en utilisant le résultat suivant, admis :
- si (u_{2n}) et (u_{2n+1}) convergent vers la même limite, alors u converge vers cette limite.
 - 4. On pose pour tout entier $n, z_n = \frac{u_n a}{u_n b}$. (les valeurs a et b étant celles définies précédemment).

On ne suppose plus que $u_0 = 1$ mais seulement que $u_0 > 0$.

- (a) Montrer que, pour tout entier n, z_n est bien définie et que z est une suite géométrique.
 - (b) Déterminer la valeur de u_n en fonction de z_n . Déterminer sa limite quand n tend vers l'infini.

Exercice 20

Sur le marché d'un certain bien, on note D la fonction de demande globale (des consommateurs), O la fonction

d'offre globale (des entreprises) et p le prix de vente du bien.

On suppose habituelement que la fonction $D: p \longmapsto D(p)$ définie sur \mathbb{R}^+ à valeurs réelles est décroissante et que

la fonction $O: p \longmapsto O(p)$ définie sur \mathbb{R}^+ à valeurs réelles est croissante.

Si l'équation O(p) = D(p) admet une solution p^* , on dit que p^* est un prix d'équilibre du marché.

Avant d'atteindre un niveau d'équilibre, le prix p peut être soumis à des fluctuations provoquées par des excès

d'offre (O(p) > D(p)) ou des excès de demande (D(p) > O(p))au cours du temps.

Afin de rendre compte de cette évolution, on note pour tout $n \in \mathbb{N}$, \mid_n la valeur du prix à l'instant n.

On suppose que la demande dépend de la valeur du prix selon la relation $D_n = D(p_n)$ valable pour tout $n \in \mathbb{N}$.

Quant aux entreprises, elles adaptent à chaque instant $n \in \mathbb{N}$, la quantité offerte O_n à l'instant n à un prix anticipé à l'instant (n-1), noté \hat{p}_n , selon la relation $O_n = O(\hat{p}_n)$, où \hat{p}_0 peut être interprété comme un prix d'étude de marché.

On suppose qu'à chaque instant, l'offre est égale à la demande, c'est-à-dire : pour tout $n \in \mathbb{N}, \mathbb{O}_n = D_n$.

Dans toute cette partie, on considère quatre paramètres réels strictement positifs a, b, c, d, avec a > d, et on suppose que les fonctions D et O sont définies sur \mathbb{R}^+ par : D(p) = a - bp et O(p) = cp + d.

Par suite, on a pour tout $n \in \mathbb{N}$, $\mathbb{D}(p_n) = a - bp_n$ et $O(\hat{p}_n) = c\hat{p}_n + d$.

1. Dans cette question uniquement, les réels a, b, c, d ont les valeurs suivantes a = 40, b = 8, c = 2 et d = 20. Ainsi on a:

*Pour tout réel $p \ge 0, D(p) = 40 - 8p$ et O(p) = 2p + 20

*pour tout $n \in \mathbb{N}$, $\mathbb{D}(p_n) = 40 - 8p_n$ et $O(\hat{p}_n) = 2\hat{p}_n + 20$.

On suppose que p_0 et p_1 sont donnés et que pour tout entier $n \ge 2$, on a : $\hat{p}_n = 2p_{n-1} - p_{n-2}$.

(a) Etablissons l'existence et l'unicité d'un prix d'équilibre p^* :

$$D(p) = O(p) \iff 40 - 8p = 2p + 20$$
$$\iff p = p^* = 2$$

(b) pour tout $n \ge 2$, on sait que:

$$*\hat{p}_n = 2p_{n-1} - p_{n-2}.$$

*pour tout $n \in \mathbb{N}, \mathbb{D}(\mathbf{1}_n) = O(\hat{p}_n) \Longleftrightarrow 40 - 8p_n = 2\hat{p}_n + 20$

$$\Leftrightarrow 40 - 8p_n = 2(2p_{n-1} - p_{n-2}) + 20$$

$$\iff$$
 $8p_n = 20 - 4p_{n-1} + 2p_{n-2}$

$$\iff 8p_n = 20 - 4p_{n-1} + 2p_{n-2}$$

$$\iff p_n = -\frac{1}{2}p_{n-1} + \frac{1}{4}p_{n-2} + \frac{5}{2}.$$

(c) On pose pour tout $n \in \mathbb{N}$: $v_n = p_n - p^*.Montrons$ que la suite $(v_n)_{n \in \mathbb{N}}$ est une suite récurrente linéaire d'ordre 2.

pour tout
$$n \ge 2$$
, on sait que $p_n = -\frac{1}{2}p_{n-1} + \frac{1}{4}p_{n-2} + \frac{5}{2}$

et posant $v_n = p_n - 2$, $v_{n-1} = p_{n-1} - 2$, $v_{n-2} = p_{n-2} - 2$, on obtient : $v_n + 2 = -\frac{1}{2}(v_{n-1} + 2) + \frac{1}{4}(v_{n-2} + 2) + \frac{5}{2}$

$$v_n + 2 = -\frac{1}{2}(v_{n-1} + 2) + \frac{1}{4}(v_{n-2} + 2) + \frac{5}{2}$$

$$\Leftrightarrow v_n = -\frac{1}{2}v_{n-1} + \frac{1}{4}v_{n-2} - 1 + \frac{1}{2} + \frac{5}{2} - \frac{1}{2}v_{n-1} + \frac{1}{2}v_{n-2} - \frac{1}{2}v_{n-1} + \frac{1}{2}v_{n-2} - \frac{1}{2}v_{n-2} + \frac{1}{2}v_{n-2} - \frac{1}{2}v_{n-2} + \frac{1}{2}v_{n-2} + \frac{1}{2}v_{n-2} - \frac{1}{2}v_{n-2} + \frac{1}{$$

$$\Leftrightarrow v_n = -\frac{1}{2}v_{n-1} + \frac{1}{4}v_{n-2} - 1 + \frac{1}{2} + \frac{5}{2} - 2$$

$$\Leftrightarrow pour \ tout \ n \geqslant 2 : v_n = -\frac{1}{2}v_{n-1} + \frac{1}{4}v_{n-2}$$

Donc la suite $(v_n)_{n\in\mathbb{N}}$ est bien une suite récurrente linéaire d'ordre 2.

(d) L'équation caractéristique de la suite $(v_n)_{n\in\mathbb{N}}$ est l'équation $:x^2+\frac{1}{2}x-\frac{1}{4}=0$, dont les solutions distinctes sont $r_1 = \frac{\sqrt{5-1}}{4}$ et $r_2 = \frac{\sqrt{5+1}}{4}$

(e) Il existe ainsi deux réels h, k tels que pour tout $n \in \mathbb{N}, v_n = hr_1^n + kr_2^n$

En particulier :
$$\begin{cases} v_0 = h + k \\ v_1 = hr_1 + kr_2 \end{cases} \Leftrightarrow \begin{cases} h = \frac{r_2v_0 - v_1}{r_2 - r_1} \\ k = \frac{v_1 - r_1v_0}{r_2 - r_1} \end{cases}$$

donc :pour tout $n \in \mathbb{N}, \succeq_n = \frac{r_2 v_0 - v_1}{r_2 - r_1} r_1^n + \frac{v_1 - r_1 v_0}{r_2 - r_1} r_2^n$

 $\Leftrightarrow \text{pour tout } n \in \mathbb{N}, p_n = p^* + \frac{r_2 v_0 - v_1}{r_2 - r_1} r_1^n + \frac{v_1 - r_1 v_0}{r_2 - r_1} r_2^n$

(f) Comme la fonction racine carrée est strictement croissante sur $\mathbb{R}^+: 4 < 5 < 9 \Longrightarrow 2 < \sqrt{5} < 3$

Comme la fonction racine carres : $\left\{ \begin{array}{l} \frac{1}{4} < r_1 < \frac{1}{2} \\ \frac{3}{4} < r_2 < 1 \end{array} \right.$

et par la limite usuelle : $\forall q \in]-1,1[$, $\lim_{n\to+\infty}q^n=0$, on a aussi : $\lim_{n\to+\infty}r_1^n=0$, $\lim_{n\to+\infty}r_2^n=0$ donc la suite $(p_n)_{n\in\mathbb{N}}$ est bien convergente telle que $\lim_{n\to+\infty}p_n=p^*$.

Avec n grand, le marché tend vers sa position d'équilibre.

2. Soit β un paramètre réel vérifiant $0 < \beta \le 1$. On suppose que le prix p_0 est donné et que les anticipations de

prix sont adaptatives , c'est-à-dire que pour tout entier $n\geqslant 1, on$ a : $\hat{p}_n=\hat{p}_{n-1}+\beta\left(p_{n-1}-\hat{p}_{n-1}\right)$

- (a) pour tout $n \in \mathbb{N}$, le prix courant p_n et prix anticipé \hat{p}_n doivent vérifier la relation $\mathbb{D}(\mathbf{1}_n) = O(\hat{p}_n)$ donc $: a bp_n = c\hat{p}_n + d \Leftrightarrow \forall n \in \mathbb{N}, p_n = \frac{a-d}{b} \frac{c}{b}\hat{p}_n$
- (b) Ainsi pour tout $n \in \mathbb{N}^*$, $\hat{p}_n = \hat{p}_{n-1} + \beta (p_{n-1} \hat{p}_{n-1})$ et $p_{n-1} = \frac{a-d}{b} \frac{c}{b}\hat{p}_{n-1}$ donc

$$p_{n} = \frac{a-d}{b} - \frac{c}{b} (\hat{p}_{n-1} + \beta (p_{n-1} - \hat{p}_{n-1}))$$

$$= p_{n-1} - \frac{c}{b} \beta p_{n-1} + \frac{c\beta}{b} \hat{p}_{n-1}$$

$$= p_{n-1} - \frac{c}{b} \beta p_{n-1} + \beta \left(\frac{a-d}{b} - p_{n-1} \right)$$

$$= \left(1 - \beta \left(\frac{c}{b} + 1 \right) \right) p_{n-1} + \beta \frac{a-d}{b}$$

Ainsi : pour tout $n \in \mathbb{N}^*$, le prix p_n vérifie bien l'équation de récurrence : $p_n = \left(1 - \beta \frac{b+c}{b}\right) p_{n-1} + \beta \frac{a-d}{b}$

(c) Rappelons que le prix d'équilibre p^* est obtenu ss'il existe p > 0 tel que $D(p) = O(p) \Leftrightarrow a - bp = cp + d \Leftrightarrow p =$

On reconnaît que la suite $(p_n)_{n\in\mathbb{N}}$ est arithmético-géométrique.

Soit x le réel solution de l'équation : $x = \left(1 - \beta \frac{b+c}{b}\right)x + \beta \frac{a-d}{b} \iff x = \frac{a-d}{c+b} = p^*$

Alors la suite (v_n) définie par $v_n = p_n - p^*$ est géométrique de raison $q = \left(1 - \beta \frac{b+c}{b}\right)$, 1er terme $v_n = r_0 - r^*$

$$v_0 = p_0 - p^*$$
donc: $\forall n \in \mathbb{N}, p_n = p^* + \left(1 - \beta \frac{b+c}{b}\right)^n (p_0 - p^*)$

(d) En supposant que $p_0 \neq p^*$, la suite $(p_n)_{n \in \mathbb{N}}$ converge si et seulement si :

$$1 - \beta \frac{b+c}{b} \in]-1, 1[\Leftrightarrow -2 < -\beta \frac{b+c}{b} < 0$$

$$\Leftrightarrow 0 < 1 + \frac{c}{b} < \frac{2}{\beta}. \Leftrightarrow c > 0, b > 0$$

On a alors $\lim_{n \to +\infty} \left(1 - \beta \frac{b+c}{b}\right)^n (p_0 - p^*) = 0$ et $\lim_{n \to +\infty} p_n = p^* = \frac{a-d}{c+b}$

(e) Comme $\beta \in [0,1]$, alors on a successivement :

$$\begin{array}{ccc} \frac{1}{\beta} & \geqslant & 1 \\ & \Leftrightarrow & \frac{2}{\beta} \geqslant 2 \\ & \Leftrightarrow & \frac{2}{\beta} - 1 \geqslant 1 \end{array}$$

or quand c < b, b > 0, alors $0 < \frac{c}{b} < 1$

Donc quand c < b, on vérifie la condition : $\frac{c}{b} < \frac{2}{\beta} - 1$ donc la suite la suite $(p_n)_{n \in \mathbb{N}}$ converge et

$$\lim_{n \to +\infty} p_n = p^* = \frac{a - d}{c + b}$$

Exercice 21

1. Soit $a \in]-1$; $+\infty[$. Montrons par récurrence que pour tout entier naturel n, $(1+a)^n \ge 1 + na$.

Soit
$$\mathcal{P}(n)$$
: $(1+a)^n \geqslant 1+na$.

Initialisation : on a $(1+a)^0 = 1 \ge 1 + 0 \times a = 1$, donc $\mathcal{P}(0)$ est vraie.

Hérédité : supposons que la propriété $\mathcal{P}(n)$ est vraie pour un certain entier n, c'est à dire, $(1+a)^n \ge 1+na$, montrons que $\mathcal{P}(n+1)$ est vraie, c'est à dire $(1+a)^{n+1} \ge 1+(n+1)a$.

En effet,

$$(1+a)^n \geqslant 1 + na \Rightarrow (1+a) \times (1+a)^n \geqslant (1+a)(1+na) \Rightarrow (1+a)^{n+1} \geqslant 1 + na + a + na^2$$

$$\Rightarrow (1+a)^{n+1} \ge (1+(n+1)a) + na^2$$

$$\Rightarrow (1+a)^{n+1} \geqslant 1 + (n+1)a$$
 puisque $na^2 \geqslant 0$

Donc $\mathcal{P}(n+1)$ est vraie.

Conclusion : la propriété $\mathcal{P}(n)$ est vraie pour tout entier naturel n, soit

$$\forall n \in \mathbb{N}, (1+a)^n \geqslant 1+na$$

2. Voici un contre-exemple : si a = -4 et n = 3, on a $(1 + (-4))^3 = (-3)^3 = -27 < 1 + 4 \times (-3) = -11$.

Exercice 23

Soit $P(n) : u_n = n + 1$.

Initialisation : $u_0 = 1 = 0 + 1$, donc P(0) est vraie.

Hérédité : suposons que P(n) est vraie pour un certain $n \in \mathbb{N}$, c'est à dire, $u_n = n + 1$.

Montrons que P(n+1) est vraie, c'est à dire,

$$u_{n+1} = n + 2.$$

En effet, on a:

$$u_{n+1} = \left(1 + \frac{1}{n+1}\right) u_n$$

= $\left(1 + \frac{1}{n+1}\right) (n+1) (\text{par HR})$
= $n+1 + \frac{n+1}{n+1}$
= $n+2$.

Donc P(n+1) est vraie.

Conclusion : pour tout $n \in \mathbb{N}$, $u_n = n + 1$.

Exercice 24

1. Soit P(n): $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$.

Initialisation : $\sum_{k=1}^{1} k = 1 = \frac{1 \times (1+1)}{2}$, donc P(1) est vraie.

Hérédité : suposons que P(n) est vraie pour un certain $n \in \mathbb{N}^*$, c'est à dire, $\sum_{k=1}^n k = \frac{n(n+1)}{2}$.

Montrons que P(n+1) est vraie, c'est à dire, $\sum_{k=1}^{n+1} k = \frac{(n+1)(n+2)}{2}$

En effet,

$$\sum_{k=1}^{n+1} k = \left(\sum_{k=1}^{n} k\right) + n + 1$$

$$= \frac{n(n+1)}{2} + n + 1 \text{(d'après HR)}$$

$$= (n+1)(\frac{n}{2} + 1)$$

$$= \frac{(n+1)(n+2)}{2}.$$

Donc P(n+1) est vraie.

Conclusion: $\forall n \in \mathbb{N}^*, \sum_{k=1}^n k = \frac{n(n+1)}{2}.$

2. Soit P(n): $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.

Initialisation : $\sum_{k=1}^{1} k^2 = 1 = \frac{1 \times (1+1) \times (2 \times 1+1)}{6}$, donc P(1) est vraie.

Hérédité : supposons que P(n) est vraie pour un $n \in \mathbb{N}^*$, c'est à dire, $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$.

Montrons que P(n+1) est vraie, c'est à dire, $\sum_{k=1}^{n+1} k^2 = \frac{(n+1)(n+2)(2n+3)}{6}$

En effet,

$$\sum_{k=1}^{n+1} k^2 = \left(\sum_{k=1}^n k^2\right) + (n+1)^2$$

$$= \frac{n(n+1)(2n+1)}{6} + (n+1)^2 \text{(d'après HR)}$$

$$= (n+1)(\frac{n(2n+1)}{6} + n + 1)$$

$$= (n+1)\frac{2n^2 + n + 6(n+1)}{6}$$

$$= (n+1)(\frac{2n^2 + 7n + 6}{6})$$

$$= \frac{(n+1)(n+2)(2n+3)}{6}.$$

Donc P(n+1) est vraie.

Conclusion: $\forall n \in \mathbb{N}^*, \ \sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}.$

3. Soit $P(n): \sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$.

Initialisation : $\sum_{k=1}^{1} k^3 = 1 = \left(\frac{1 \times (1+1)}{2}\right)^2$, donc P(1) est vraie.

Hérédité : supposons que P(n) est vraie pour un certain $n \in \mathbb{N}^*$, c'est à dire,

$$\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2.$$

Montrons que P(n+1) est vraie, c'est à dire, $\sum_{k=1}^{n+1} k^3 = \left(\frac{(n+1)(n+2)}{2}\right)^2$ En effet,

$$\sum_{k=1}^{n+1} k^3 = \left(\sum_{k=1}^n k^3\right) + (n+1)^3$$

$$= \left(\frac{n(n+1)}{2}\right)^2 + (n+1)^3 \text{ (d'après HR)}$$

$$= (n+1)^2 \left(\frac{n^2}{4} + n + 1\right)$$

$$= (n+1)^2 \times \left(\frac{n^2 + 4(n+1)}{4}\right)$$

$$= (n+1)^2 \times \frac{n^2 + 4n + 4}{4}$$

$$= \left(\frac{(n+1)(n+2)}{2}\right)^2.$$

Donc P(n+1) est vraie.

Conclusion: $\forall n \in \mathbb{N}^*, \sum_{k=1}^n k^3 = \left(\frac{n(n+1)}{2}\right)^2.$

Exercice 25

1. Soit $P(n) : n! > n^2$.

Initialisation

Pour n = 4, $4! = 4 \times 3 \times 2 \times 1 = 24 > 16 = 4^2$.

Donc P(4) est vraie

Supposons que P(n) est vraie pour un certain $n \ge 4$, c'est à dire, $n! > n^2$.

Montrons que P(n+1) est vraie.

En effet, on a

 $(n+1)! = (n+1)n! > (n+1)n^2$ (par HR).

Comme $n \ge 4$, on a $n^2 = n \times n \ge 4n$. Or pour $n \ge 4$, 4n = n + 3n > n + 1, d'où $n^2 \ge (n + 1)$.

Donc $(n+1)n^2 \ge (n+1)^2$, et $(n+1)! > (n+1)^2$. Donc P(n+1) est vraie.

Conclusion : pour tout entier $n \ge 4$, $n! \ge n^2$.

2. Montrons par récurrence que : $\forall n \ge 6, n! > n^3$.

Soit $P(n): n! > n^3$.

Initialisation

Pour $n = 6, 6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720 > 6^3 = 216$. Donc P(6) est vraie

Supposons que P(n) est vraie pour un certain $n \ge 6$, c'est à dire, $n! > n^3$.

Montrons que P(n+1) est vraie.

En effet, $(n+1)! = (n+1)n! > (n+1)n^3$ (par hypothèse de récurrence)

Comme $n \ge 6$, on a $n^3 = n \times n^2 \ge 6n^2$. Or pour tout $n \ge 6$ on a :

$$6n^{2} = (n^{2} + 2n^{2} + n^{2}) + 2n^{2}$$

$$> (n^{2} + 2n + 1) + 2n^{2}(\operatorname{car} n > 1)$$

$$\ge (n+1)^{2}(\operatorname{carn}^{2} + 2n + 1) = (n+1)^{2}$$
et $2n^{2} \ge 0$.

D'où $(n+1)n^2 \ge (n+1)^3$, soit $(n+1)! \ge (n+1)^3$. Donc P(n+1) est vraie. Conclusion : pour tout entier $n \ge 6$, $n! \ge n^6$.

Exercice 26

Soit
$$P(n): 1 + \frac{1}{2^2} + \dots + \frac{1}{n^2} > \frac{3n}{2n+1}$$
.

Initialisation : $1 + \frac{1}{2^2} = \frac{5}{4} > \frac{3 \times 2}{2 \times 2 + 1} = \frac{6}{5}$, donc P(2) est vraie.

Hérédité : supposons que P(n) est vraie pour un certain $n \in \mathbb{N} \setminus \{0,1\}$, c'est à dire, $P(n): 1 + \frac{1}{2^2} + \cdots + \frac{1}{n^2} > 0$ $\frac{3n}{2n+1}$. Montrons que P(n+1) est vraie, c'est à dire, $1+\frac{1}{2^2}+\cdots+\frac{1}{n^2}+\frac{1}{(n+1)^2}>\frac{3(n+1)}{2n+3}$.

 $1 + \frac{1}{2^2} + \dots + \frac{1}{n^2} + \frac{1}{(n+1)^2} > \frac{3n}{2n+1} + \frac{1}{(n+1)^2}$ (par hypothèse de récurrence). Donc pour montrer P(n+1),

il suffit de montrer que $\frac{3n}{2n+1} + \frac{1}{(n+1)^2} > \frac{3(n+1)}{2n+3}$, soit $\frac{3n}{2n+1} - \frac{3(n+1)}{2n+3} + \frac{1}{(n+1)^2} > 0$.

On a
$$\frac{3n}{2n+1} - \frac{3(n+1)}{2n+3} + \frac{1}{(n+1)^2} = \frac{3n}{2n+1} - \frac{3(n+1)}{2n+3} + \frac{1}{(n+1)^2}$$

$$= \frac{3n(n+1)^2(2n+3) - 3(n+1)^3(2n+1) + (2n+1)(2n+3)}{(n+1)^2(2n+1)(2n+3)}$$

$$= \frac{3(n+1)^2(n(2n+3) - (n+1)(2n+1)) + (2n+1)(2n+3)}{(n+1)^2(2n+1)(2n+3)}$$

$$= \frac{3(n+1)^2(2n^2+3n-(2n^2+n+2n+1)) + (4n^2+6n+2n+3)}{(n+1)^2(2n+1)(2n+3)}$$

$$= \frac{-3(n+1)^2 + (4n^2+8n+3)}{(n+1)^2(2n+1)(2n+3)}$$

$$= \frac{-3n^2 - 6n - 3 + 4n^2 + 8n + 3}{(n+1)^2(2n+1)(2n+3)}$$

$$= \frac{n^2 + 2n}{(n+1)^2(2n+1)(2n+3)} > 0.$$
Denote $P(n+1)$ set yratio

Donc P(n+1) est vraie.

Conclusion: $\forall n \in \mathbb{N} \setminus \{0,1\}, 1 + \frac{1}{2^2} + \dots + \frac{1}{n^2} > \frac{3n}{2n+1}$

Exercice 27

Soit (u_n) la suite réelle déterminée par

$$u_0 = 2, u_1 = 3 \text{ et } \forall n \in \mathbb{N}, u_{n+2} = 3u_{n+1} - 2u_n$$

Montrons par récurrence double que

$$\forall n \in \mathbb{N}, u_n = 2^n + 1$$

Soit $P(n): u_n = 2^n + 1$.

Initialisation : On a $u_0 = 2 = 2^0 + 1$ et $u_1 = 3 = 2^1 + 1$. Donc P(0) et P(1) sont vraies.

Hérédité : Supposons que P(n) et P(n+1) sont vraies pour un certain $n \in \mathbb{N}$, c'est à dire, $u_n = 2^n + 1$ et $u_{n+1} = 2^{n+1} + 1$, montrons que P(n+2) est vraie.

En effet, on a

$$u_{n+2} = 3u_{n+1} - 2u_n$$

$$= 3(2^{n+1} + 1) - 2(2^n + 1) \text{ (par HR)}$$

$$= 3 \times 2^{n+1} + 3 - 2 \times 2^n - 2$$

$$= 3 \times 2^{n+1} + 3 - 2^{n+1} - 2$$

$$= 2 \times 2^{n+1} + 1$$

$$= 2^{n+2} + 1$$

Donc P(n+2) est vraie.

Conclusion: $\forall n \in \mathbb{N}, u_n = 2^n + 1$